INTELLIGENT AUTOMATION INC., PROPRIETARY INFORMATION

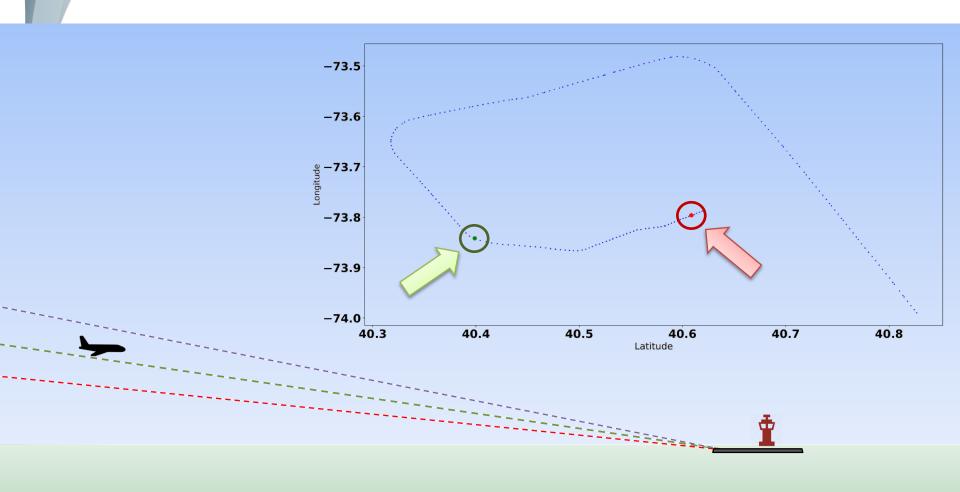
The information contained in this document is property of IAI, and further dissemination is prohibited without written permission of IAI

EXPLAINABLE MACHINE LEARNING FOR AVIATION SAFETY ASSURANCE

November 29, 2018

Intelligent Automation, Inc.	Alexander Grushin Jyotirmaya Nanda Ankit Tyagi David Miller Joshua Gluck
NASA Ames	Nikunj Oza

Degraded States in Aviation



Finding Precursors to Degraded States

- 1. <u>Detect</u> degraded states in aviation data
 - Such states may increase the likelihood of a safety incident
 - We use statistical methods, potentially with a human in the loop
- 2. Predict that a degraded state may occur in the future
 - If the prediction is made early, then corrections can be made
 - We train a "black box" recurrent neural network to make the prediction
- 3. Explain why the prediction was made
 - This helps to identify the precursors to the degraded state
 - We extract an interpretable ("white box") model from the neural network

Data

- Sequence $X = (x_{t_1}, x_{t_2}, ..., x_{t_n})$ of aircraft state observations over time
- Each observation x_{t_i} contains the multiple <u>feature</u> values:
 - Absolute distance to the airport
 - Relative distance to the airport
 - Altitude
 - Ground speed
 - Latitude
 - Longitude
 - Vertical speed
 - Ground acceleration
 - Heading
 - Heading rate

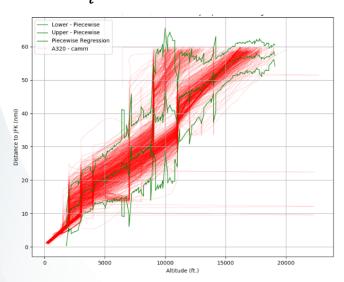
Detection via Statistical Techniques

• For a given altitude, is the aircraft too far away from the airport? I.e., is relative distance to the airport $\frac{d_{t_i}-l_{t_i}}{u_{t_i}-l_{t_i}} \ge 1$?

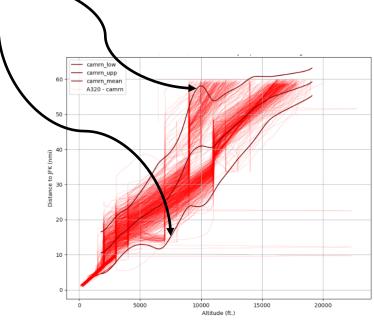
- d_{t_i} is the absolute distance to the airport

 $-u_{t_i}$ is the distance upper bound

 $-l_{t_i}$ is the distance lower bound



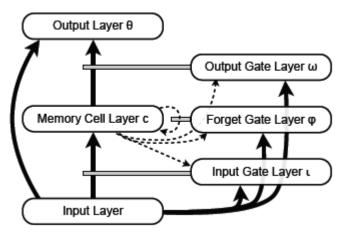
Piecewise Linear Regression



Smoothing via Multiquadric RBFs

Prediction via Long Short-Term Memory

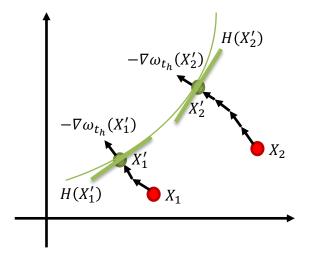
- Input: observation x_{t_i}
- Output: degree of belief $\omega_{t_i} \in [0,1]$ that a degraded state will occur in the future
- Memory cells store information for extended periods of time
- Gates determine:
 - How much is stored in memory
 - How long memory persists
 - How memory affects the output



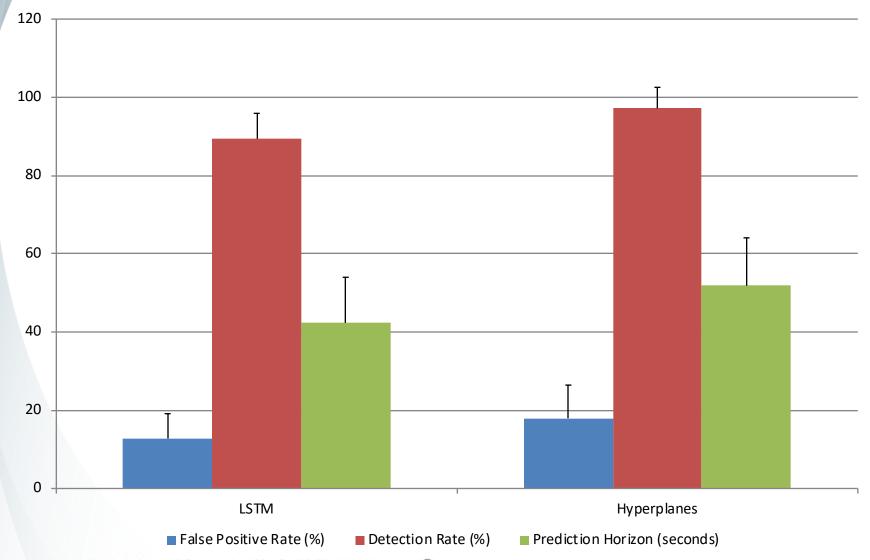
[Monner and Reggia 2010]

Explanation via White Box Model Extraction

- Start with a degraded training sequence $X = (x_{t_1}, x_{t_2}, ..., x_{t_n})$
 - The degraded state is predicted at time $t_h \leq t_n$
- Perturb X via gradient descent, until the network's prediction changes
- Let X' be the perturbed sequence
 - Note that X' exists on (or near) the network's decision boundary
- Compute the gradient $\nabla \omega_{t_h}(X')$ with respect to X'
- Define the hyperplane equation: $\nabla \omega_{t_h}(X') \cdot X \nabla \omega_{t_h}(X') \cdot X' = 0$



Approximation Accuracy



Interpreting the Decision Criteria

Feature	Average Coefficient	Standard Deviation of Coefficients
Distance	5.66	2.49
Relative Distance	14.48	6.12
Altitude	-1.06	0.66
Ground Speed	-7.73	3.39
Latitude	-0.96	0.83
Longitude	0.45	0.78
Vertical Speed	-1.26	0.57
Acceleration	-0.64	0.84
Heading	-0.06	0.26
Heading Rate	0.32	0.33

A distance upper bound violation is more likely to occur if the flight is already close to the upper bound; this may be associated with lower ground speeds

Conclusions and Future Work

- We performed sensitivity analysis <u>at the decision boundary</u>, and <u>approximated it via hyperplanes</u>
 - The approximation is accurate, for the given prediction problem
 - The approximation yields insight into the network's decision-making logic
- We are applying the approach to find precursors for other types of degraded states
 - E.g., unstable approaches
- Can the approach work for other neural network architectures?
 - E.g., deep neural networks

References

- W. Samek, T. Wiegand and K.-R. Müller, Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models, arXiv:1708.08296v1, 2017
- 2. D. Monner and J. Reggia, Generalized LSTM-like Training Algorithm for Second Order Recurrent Neural Networks, *Neural Networks* 25(1):70-83, 2012
- 3. L. Arras, G. Montavon, K.-R. Müller and W. Samek, Explaining Recurrent Neural Network Predictions in Sentiment Analysis, 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 159-168, 2017
- 4. S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, Deepfool: A Simple and Accurate Method to Fool Deep Neural Networks, *CVPR*, pp. 2574–2582, 2016

Acknowledgments

- Intelligent Automation, Inc.
 - Naresh Cuntoor
 - Chris Kurcz
 - Yaroslav Ryabov
 - Bryan Stewart
 - Sergey Voronin
 - Frederick Wieland
- Metron Aviation
 - Jim Smith
- Purdue University
 - Apoorv Maheshwari

Thank You!

